
NBSIR 78-1420-1 ^

NBS Minimal BASIC Test
Programs - Version 1

User's Manual
Volume 1 - Test System Overview

David E Gilsinn

Charles L. Sheppard

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

U S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDAROS

NBSIR 78-1420-1

NBS MINIMAL BASIC TEST
PROGRAMS - VERSION 1

USER'S MANUAL
Volume 1 - Test System Overview

David E. Gilsinn

Charles L. Sheppard

Systems and Software Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D C. 20234

U.S. DEPARTMENT OF COMMERCE. Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

TABLE OF CONTENTS

Page

Abstract 11

Acknowledgements iii

1.0 Introduction 1

2.0 Test Program Design Considerations 2

2.1 The Minimal BASIC Language 2

2.2 Test System Logic and Organizaition 2

2.3 Test System Objectives 4

2.4 Test System Environment 5

2.5 Test System Assumptions 6

3.0 Index of the Test Programs to the Minimal BASIC
Standard 7

4.0 User Instructions 34

4.1 Order of Test Execution 34

4.2 User Interaction 34

5.0 Experience 35

6.0 Observations on Testing 36

7.0 References 37

i

Abstract

This volume is the first of four volumes that comprise the user's guide
to the NBS Minimal BASIC test programs. These programs test the conformance
of a processor for the BASIC programming language to the specifications given
in BSR X3.60 Proposed Aroer ican National Standard for Minimal BASIC , which is
expected to be a Federal Standard. This volume introduces the test system, and
covers test program design considerations, user instructions, a discussion of
experience in using the system, as well as some observations on testing as a

whole. This volume also contains a cross reference index between
specifications within the Minimal BASIC standard and the test programs.
Volumes 2 through 4 contain brief descriptions, listings and sample outputs
of the individual test programs for Minimal BASIC. The entire set of
programs is available on magnetic tape from the Institute for Computer Sciences
and Technology at the National Bureau of Standards.

hey Words: BASIC, BASIC standard, BASIC, validation, compiler validation,
computer programming language, computer standards

Acknowledgements

The authors owe thanks to many people for their assistance during the
development of these test routines. We thank those members of the American
National Standards Institute subcommittee X3J2 (BASIC)who assisted with many of
the details of the tests and have given us pointers during the development
stage. We acknowledge the help of Prof .J. A. N. Lee of the Virginia Polytechnic
Institute and the Laboratory Automation Section of the National Bureau of
Standards. Both provided the authors with test programs that contributed in
a significant way to this test system. We furthermore acknowledge the
leadership in compiler test program development shown by Frances E.
Holberton and Elizabeth G. Parker of NBS. The program structure and system
design developed by them for the NBS FORTRAN Test Programs [4] assisted the
authors organize the standard specifications for testing and develop an
orderly sequence of tests. We thank Prof. Marvin Zelkowitz and Mr. Mark
Klein of the University of Maryland for providing helpful comments and
evaluation of the test routines during the development phase. We thank Mr.
Dan Lozier of the Applied Mathematics Division of the National Bureau of
Standards for providing us with the test values and arguments for the
mathematical function tests. We finally thank Dr. Dennis W. Fife, Susan
Mitchell, Erica Jen, Beatrice Marron, Belkis Leong-Hong, and I. Trotter
Hardy of the Computer Science Section of the National Bureau of Standards for
their comments and assistance during the preparation and editing of these
volumes

.

Note to the Reader

This documentation is a preliminary review copy of the NBS test programs
for the Minimal BASIC computer language. They will be used for Government-wide
validation of BASIC processors procured by Federal agencies in order to test
conformance with the forthcoming American National Standard for Minimal BASIC.
Inasmuch as no validation system has previously been available for BASIC, and
the specification of Minimal BASIC is still under consideration for adoption
as a Federal and national standard, it is appropriate to distribute the test
programs for review and comment by concerned parties. All comments and sug-
gestions on the programs and the documentations should be directed to:

Project Manager
NBS BASIC Test Programs
Systems and Software Division
Institute for Computer Sciences

and Technology
National Bureau of Standards
Washington, D.C. 2023^

The programs and the documentations will be reissued with any advisable
revisions as soon as possible after the American National Standards Institute
formally adopts Minimal BASIC as a national standard.

Future validation program releases will occur, first of all, when more
comprehensive or precise tests become available for features of the Minimal
BASIC standard. Secondly, new releases will be made after the adoption of any
enhancement standard for BASIC.

1.0 Introduction

The NBS Minimal BASIC test system is composed of a collection of
relatively short programs written using the Minimal BASIC language and
designed to exercise an implementation of Minimal BASIC, i.e. a processor
(hardware and software) that translates the language statements to executable
form. The programs begin with the least sophisticated PRINT capability and
proceed through assignment of variables to control statements and expression
construction. From this point the tests move on to loops, data structures,
internal subroutines, multiway branches and data input. They end with an
examination of the accuracy of the supplied mathematical functions and
compound algebraic expressions. The programs are self-contained and are
ordered by increasing difficulty. Each of the programs tests one or a few
specific features of the Minimal BASIC language. In order to properly
interpret the results of the test system, the user must be thoroughly
familiar with the proposed American National Standards Institute Standard for
Minimal BASIC, BSR X3.60 [1],

The tests are uot simply syntax conformance tests but are implementation
tests. They were written from the point of view of one who wished to
determine the limits of capability of his implementation. For this reason
the programs test not only, for example, that algebraic operations are
recognized, but that they return accurate results. They further test that
exceptional circumstances are recognized and reported when required.

1

2.0

Test Program Design Considerations2.1

The Minimal BASIC Language

The Proposed ANSI Minimal BASIC Standard X3.60 presents the form for and
the interpretation of programs written in the Minimal BASIC programming
language. This subset language of BASIC represents a small nucleus of
capabilities that will be followed in the future with one or more compatible
enhancement extensions. These extensions will be standardized at a later
time. The enhancements are presently being designed as upward extensions to
Minimal BASIC in such areas as files, flexible input/output formatting,
mathematical functions and matrices, control of real-time processing, string
manipulation and other general capabilities.

As a language Minimal BASIC includes capabilities necessary to compute
arbitrary arithmetic expressions, assign numeric and string values to
variables, accept input, display output, structure programs into simple loops
and rudimentary "subroutines," and to allow users to define simple
value-returning functions. Minimal BASIC also provides a modest set of
"built-in" functions to provide users with sine, tangent, log, square root,
pseudo-random numbers, and some other functions.

In general a standard Minimal BASIC program is composed of a sequence of
lines, ordered by line numbers, with the last line being an END statement.
The program is sequentially executed except for control statement action,
exception conditions, or user interruptions. The statements and
implementation supplied functions allowed in Minimal BASIC are:

1. Supplied Functions: RND , ABS , ATN , COS, EXP, INT,
LOG, SGN , SIN, SQR, TAN

2. Assignment: LET

3. Control Statements: END, FOR - NEXT, GOSUB - RETURN,
GOTO, IF - THEN, ON - GOTO, STOP

4. Input-Output: INPUT, PRINT

5. Data Initialization: DATA, READ, RESTORE

6. Data Declarations: DIM, OPTION BASE

7. User-Defined Functions: DEF

8. Miscellaneous Statements: RANDOMIZE, REM

2.2

Test System Logic and Organization

The system of validation tests executes the required specifications of
Minimal BASIC in a progressive manner. It is clear, however, that any set of
programs which is designed to test complex specifications can never test
every interaction of every statement, with all permissible forms, in all
permissible positions in an executable program. However, the system was
designed so that each statement type was executed at least once and that

2

those parts of the language that had been tested were relatively easy to
determine. Secondly, as the tests extended the language capabilities, the
later tests depended only on the capabilities already tested in earlier
programs. For this reason the test programs are designed to be run in a

fixed sequence proceeding from tests of very simple features through those of
greater complexity. In some cases, this order was determined by the need for
lower level features to be tested first so that they, in turn, could be used
to test higher level features. The PRINT statement, for example, is
fundamental to all tests, for it is the only means of getting output from a

program and thus of verifying any test results. Consequently the PRINT tests
were developed first.

Almost as fundamental as getting output is the ability to assign
values--both numeric and string--to variables. Several programs test this
capability. Once one knows that assignment of values and output of strings
and numeric constants both work one can examine the control structures GOTO
and IF - THEN.

Testing the GOTO was straightforward, as were tests of IF - THEN with a

string comparison. Tests of numeric expressions, however, were found to
depend on the ability to subtract two values in order to compare a computed
value to a true value and then branch on the absolute value of the result.
This requires introducing simple arithmetic expressions and the absolute
value function. The absolute value function had to be tested in order to be
sure that statements of the form

5000 IF ABS (A3)
<= IE-6 THEN 1000

would work.

The rest of the programs were developed similarly, although as the
language capabilities tested became more sophisticated the order of testing
was not as crucial because these latter capabilities were not used in later
programs as extensively as the earlier capabilities. Each test routine was
developed on the basis of an ad hoc evaluation of each statement type. For
example, the transfer of control statements all required testing that
transfer to previous lines and following lines was possible. One also had to
test the system capability of diagnosing a transfer to an illegal line
number. In testing loops, one had to consider the various ways that FOR
NEXT limits could be written. In dealing with expression forms one again had
to consider each form in a case by case manner. In all cases the tests
execute the syntactic variations for each statement type that would likely be
used in practice.

A particularly interesting aspect of the validation routines was the
testing for accuracy of mathematical expression evaluation. In general, the
standard levies no requirements on an implementation for accuracy, but does
state that numbers should be printed in a form that exhibits at least six
decimal digits, and recommends that six digits of accuracy be maintained.
BASIC users might wish to know whether the six digits they were seeing were
in fact reasonably accurate. To make such a determination, all of the
implementation supplied functions were tested with numbers computed, with the
aid of extended precision routines, to greater than six digits accuracy, and
then rounded to six digits. This "true" value was then compared to the value
generated by the test programs. The comparison used to test the
implementation supplied functions in Volume 4 was made in the following
manner

:

3

Assume that the true value of an expression or function, say "y", is

represented in normalized form as y = mEa, where

m = the mantissa of y
E = the BASIC exponent indicator (base ten)
a = the exponent
0.1 <= ABS(m) < 1.

Similarly, let the computed value of a test program be z = nEa, where

n * mantissa of z

Then z is an approximation to y, given proper rounding, and one can state
that the relative error satisfies the inequality

ABS ((z-y) /y) <= (0 . 5E (a-6)) /ABS (y)

when y is non-zero (e.g. Fike [2], p.7). If the rounding is incorrect then
the inequality is violated, and one knows that the implementation has failed
to compute the expression accurately to at least six decimal places. Note
that when y = 0 one can consider two cases: If z = 0 then by definition the
relative error is zero; if z is non-zero, then one can interchange the
values of z and y. In the programs, scaling is used to avoid the extremes.

With respect to the random number generator RND one test concentrated on
a statistical evaluation of the uniformity of a set of random numbers
generated. There exist a large number of special random number generator
tests (see e.g. Knuth, [3], Vol. 2), so a choice had to be made considering
the purpose of the entire set of test routines. Exhaustive testing of RND
through a variety of tests was not necessary because the entire set of NBS
tests are aimed primarily at exposing major flaws or inconsistencies with the
specifications of Minimal BASIC. It seemed sufficient, rather, to use a
reasonable test to ascertain global uniformity of the random number sequence.
Therefore the system has a test that performs 30 experiments on each of 2000
random samples. The chi-square value of each experiment is computed and a
statistical goodness-of-f it test is used to test* the 30 chi-square values
against the cumulative chi-square distribution.

2.3 Test System Objectives

The general objectives of the test system are to evaluate a BASIC
processor's capability of (1) handling syntactically correct programs, (2)
interpreting the semantics correctly, and (3)returning the required exception
condition notifications. The system consists of programs each of which is
a sequence of statement lines, the last of which contains an end-statement
and each of which is identified by an allowed keyword. The statement lines
are ordered by line numbers. The programs must be executed in sequential
order, starting with the first line, until (1) some alternate action is
dictated by a control statement, (2) an exception occurs for which there is
no recovery procedure, or (3) a stop-statement or end-statement is executed.
These are the requirements for standard conforming programs and
implementations as given in section 4.4 of the Minimal BASIC standard.

The tests do not determine whether a Minimal BASIC processor could
detect all nonstandard programs because a standard conforming processor need
not reject all nonstandard programs if it implements a superset of the BASIC

4

language. The set of test programs was constructed in order to determine
whether an implementation conforms to the ANSI standard in accordance with
the rules laid down in section 1.4 of the standard. According to these one
should expect that a standard conforming BASIC language processor would
accept and process programs conforming to the standard, that it would detect
and process exceptional circumstances, that it would interpret the statement
and program semantics properly, and that it would accept as input, manipulate
and generate as output numbers of at least the precision and range specified
in the standard.

In order to test the semantics in many cases the accuracy with which
expressions were computed had to be evaluated. This was understandable
because otherwise one could not determine whether a processor would perform
simple arithmetic operations, evaluate expressions or return intrinsic
function values. The fact that a program may be syntactically acceptable
does not necessarily mean that it can do what it is asked to do. The tests
therefore include program checks on the accuracy with which expressions are
evaluated. These checks are made within the standard recommendation of six
decimal digits of precision, even though meeting this objective may not be
possible for all systems. However, testing this property adds to the BASIC
processor quality control capability of this test system. Second, the
implementation supplied functions are sampled for accuracy within the six
significant digit criteria, even though the standard does not specify any
minimum accuracy. Third, a test of the uniformity of the random number
generator function RND, which is a standard required supplied function, has
been incorporated in these tests.

2.4 Test System Environment

There are four areas related to the operational environment that the
standard does not prescribe. First, there are no bounds placed on the size
of a program written in Minimal BASIC. Next, the minimum requirements of an
automatic data processing system, which is capable of supporting an
implementation of a processor for Minimal BASIC, is not specified. Third,
the means by which programs written in Minimal BASIC are executed in the
control of a supervisory program are not specified. In particular, the
standard does not specify the set of commands used to control the environment
in which a BASIC program exists. Finally, the standard does not specify the
mechanism by which programs written in Minimal BASIC is converted for machine
processing

.

Therefore, in order to compensate for the lack of these specifications
the tests had to be constrained by some a-priori assumptions. First, the
tests are written primarily for an interactive mode of execution since BASIC
is primarily an interactive language. This does not mean that they could not
be run in batch mode, but in general the tests are principally written for an
interactive operating environment and the user, during translation and
execution of each program, should be accessible through an input-output
terminal. Next, the test programs are structured as a sequence of executable
programs, each stored as a separate file on a master tape or, if available, a
mass storage unit (disk, drum, etc.). The minimal requirements are a tape
unit, processor and devices for input and output. With respect to the
program size, each file on the master program tape consists of one executable
program of less than 300 lines. Each line of code has been restricted to

5

less than or equal to 72 characters. Furthermore, all of the
restrict core utilization to less than 5000 words of memory
processing requirements by the programs.

programs
for data

2.5 Test System Assumptions

The tests do not emphasize the detection by
errors. It assumes that whenever a statement o
not conform with the syntactic rules given, eithe
or the statement or other program element h

meaning. There are some syntax tests, but these
contents of volumes 2 through 4.

the processor of syn
r other program element d
r an error condition exi
as an implementation defi
are labeled in the table

tax
oes
sts
ned
of

All of tne test programs satisfy the proposed Minimal BASIC programming
conventions with respect to spacing. In particular, the programs all assume
that spaces can occur anywhere in a program without affecting the execution
of the program except that (1) spaces do not appear at the beginning of a
line, (2) within line numbers, (3) within keywords (with the exception of GO
TO and GO SUB), (4) within numeric constants, (5) within variable or function
names, (6) within multicharacter relational symbols. Furthermore, all
keywords in a program are preceded by at least one space and, if not at the
end of a line, are followed by at least one space. However, there is a test
for spaces appearing within strings. The main reason the conventions were
adopted was that no exception conditions for spacing were specified in the
standard. Some systems accept the various spacing possibilities above as
machine dependent capabilities.

All tests of numeric significance are based
significance only and any numeric constants
falling between IE-38 to 1E+38. Inus, the tests
can handle numbers within this range.

on testing six digits of
used have been restricted to
assume that the environment

Restricting the program line size to
test the recognition of a 72 character st
of the system capability to at least conca
display it on an output device. This
with these tests must have a margin of at
find that an output medium with some fo
useful

.

72 char acters made it impossible to
ring constant. But ther e are te sts
tenate a 72 character string and
impl ies that the outpu t device u sed
least 7 2 characters. Th e user w ill
rm of h ard copy capabi li ty wou Id be

6

3.0 Index of the Test Programs to the
Minimal BASIC Standard

This section cross references the sections of the standard [1] with the
test program sections. This is done in Table 1, below. Table 1 consists of
three columns, the first identifies the section number of the ANSI Minimal
BASIC Standard X3.60. The second column of the table gives a short statement
of the specification in that section of the standard. The third column
identifies the test program sections that exercise the given specification.
Table 2, below, gives the titles of all of the test program files and
identifies the volume number in which the tests appear. This table is
essentially the combined table of contents of volumes 2 through 4.

7

TABLE .1

Index of ANSI Standard to Test Programs

Sections
of

Standard

3.2

3.2

3.2

3.2

3.2

4.4

4.4

4.4

4.5

Specifications Test
of Program

Standard Sections

Legal letters are A through Z. 1.2.1

Legal digits are 0 through 9. 1.2.1

Plain-string-characters are letters, 1.2.1
digits, asterisk, circumflex, close,
colon, dollar, equals, g reater-than

,

less-than, minus, number-sign, open,
percent, period, plus, question-mark,
semicolon, slant, and underline.

Remark strings allow all string charac- 9.1
ters, which are BASIC conforming.

Quoted strings can contain blanks, since 1.2.2
spaces in quoted strings are significant.

Leading zeroes have no effect in line 16
numbers

.

A line can have up to 72 characters. 1

An END statement is the physically last 142,143
statement in a program.

An exception condition when two lines have 17
the same line number.

4.5 An exception condition when statement lines 18
are out of order.

5.1 NRl or implicit point representation of 4

numeric constants.

5.1 NR2 or explicit point unsealed represen- 2

tation of numeric constants.

5.1 NR3 or explicit point scaled representa- 5

tion of numeric constants.

5.1 Implicit point scaled representation of 5

numeric constants.

5.1 A string-constant is a character string 1

enclosed in quotation marks.

5.4 In a numeric constant, "E" stands for 5

"times ten to the power".

8

5.4 If no sign follows the symbol "E", then a 5

plus sign is understood.

5.4 A program can contain numeric constants 69
which have an arbitrary number of digits,
though implementation may round the values
of such constants to an implementation-
defined precision of not less than 6 sig-
nificant decimal digits.

5.4 The implementation-defined range of a 8

numeric constant shall be at least IE-38
to 1E+38

.

5.4 A string-constant has as its value the 1

string of all characters between the
quotation marks.

5.4 Spaces are not ignored in a string con- 1

stant in a LET statement.

5.4 Spaces are not ignored in a string con- 14
stant in an IF statement.

5.5 An error condition when the magnitude 61,62
of a nonzero numeric-constant is outside
the range of the implementation (nonfatal
er ror--supply zero if the magnitude is too
small or machine infinity with the appro-
priate sign if too large).

5.6 Strings of only 18 characters long are 1

required to be assignable to string vari-
ables .

6.1 Simple numeric variables consist of a 6

letter followed by an optional digit.

6.1 Arrays are named by a single letter, so 39
that subscripted numeric variables consist
of a letter followed by one or two numeric
expressions enclosed within parentheses.

6.1 String variables consist of a letter fol- 1

lowed by a dollar sign.

6.1 A dollar sign serves to distinguish string 1

from numeric variables.

6.4 Numeric values are associated with numeric 6

variable names.

6.4 String values are associated with string 1

variable names.

6.4 String variable values can be changed by 1

the execution of statements in the pro-

9

gram

6.4 Numeric variable values can be changed by
the execution of statements in the pro-
gram.

6

6.4 The length of the character string associ-
ated with a string-variable can vary
during the execution of a program from
length of zero characters (signifying the
null or empty string) to 18 characters.

1

6.4 A subscripted variable refers to the ele-
ment in the one- or two-dimensional array
selected by the value (s) of the sub-
script (s) .

39

6.4 The value of each subscript is rounded to
the nearest integer.

153

6.5 An error condition when the same sub-
scripted variable occurs with different
numbers of subscripts.

54

6.5 An error condition when a subscript is
not in the range of the explicit or im-
plicit dimensioning bounds.

55,56

7.1 String-expressions are composed of either
a string-variable or a string-constant.

1

7.2 Numeric-expressions can be constructed
from constants.

19,20,21

7.2 Numeric-expressions can be constructed
from variables.

22,23

7.2 Numeric-expressions can use the addition
operator on constants.

19

7.2 Numeric-expressions can use the subtrac-
tion operator on constants.

20

7.2 Numeric-expressions can use the multipli-
cation operator on constants.

20

7.2 Numeric-expressions can use the division
operator on constants.

21

7.2 Numeric-expressions can use the involution
operator on constants.

21

7.2 Numeric-expressions can use the addition
operator on variables.

22

7.2 Numeric-expressions can use the subtrac-
tion operator on variables.

22

10

237.2 Numeric-expressions can use the multipli-
cation operator on variables.

7.2 Numeric-expressions can use the division
operator on variables.

23

7.2 Numeric-expressions can use the involution
operator on variables.

23

7.4 The plus [+] represents addition which
adds values.

19

7 .

4

The minus [-] represents subtraction which
subtracts values.

20

7.4 The asterisk [*] represents multiplication
which multiplies two values.

20

7.4 The slant [/] represents division which
divides two values.

21

7.4 The circumflex [
*] represents involution

which raises a value to a power.
21

7 .

4

Unless parentheses dictate otherwise,
involutions are performed first, then
multiplications and divisions, and finally
additions and subtractions.

30,31

7.4 In the absence of parentheses, and where
it matters mathematically, operations of
the same precedence are associated to the
left.

30,31

7.4 Thus, A~B~C is interpreted as (A~B)~C. 30

7.4 In a function reference, the number of
arguments supplied must be equal to the
number of parameters required by the
definition of the function.

116-139

7.4 A function reference is a notation for the
invocation of a predefined algorithm, into
which the argument value, if any, is sub-
stituted for the parameter which is used
in the function definition.

19,90
94-105
108-111

7.4 The result of the evaluation of the func-
tion, achieved by the execution of the de-
fining algorithm, is a scalar numeric
value which replaces the function refer-
ence in the expression.

19,90
94-105
108-111

7.4 Spaces can be inserted between the com-
ponent syntactic elements of numeric-
expressions .

33

11

7.5

7.5

7.5

7.5

7.5

7.5

7.5

7.6

8.4

8.4

8.4

8.4

There is an error condition if the number
of arguments supplied for a function does
not agree with the number required.

There is an error condition if a function
referenced in an expression is not imple-
mentation-supplied and is not defined in
any def-statement

.

There is an error condition if the evalua-
tion of an expression results in division
by zero (nonf atal--supply machine infinity
with the sign of numerator and continue)

.

There is an error condition if the evalua-
tion of an expression results in an over-
flow (nonfatal er r or --supply machine in-
finity with the algebraically correct sign
and continue)

.

There is an error condition if the evalua-
tion of the operation of involution
results in zero being raised to a negative
power (nonf atal--supply machine infinity
and continue)

.

There is an error condition if the evalua-
tion of the operation of involution
results in a negative number being raised
to a non-integral power.

There is an error condition if the evalua-
tion of a string-expression results in a
string overflow.

If an underflow occurs in the evaluation
of a numeric expression, then the value
generated by the operation which resulted
in the underflow shall be replaced by
zero

.

The implementation-supplied function ABS
with an argument X, ABS(X), returns the
absolute value of X.

The implementation-supplied function ATN
with an argument X, ATN (X) , returns the
arctangent of X in radians.

The implementation-supplied function COS
with an argument X, COS(X), returns the
cosine of X, where X is in radians.

The implementation-supplied function EXP
with an argument X, EXP(X), returns the
exponential of X, the value of the base
of natural logarithms raised to the power

113
117-139

140

59

89

52

53

57,93

61

19

96

97

98

12

X

•
ao If EXP (X) is less than machine infinites-

imal, then its value shall be replaced
by zero.

100

00 The implementation-supplied function INT
with an argument X, INT(X), returns the
largest integer not greater than X.

90

8.4 The implementation-supplied function LOG
with an argument X, LOG(X), returns the
natural logarithm of X; X must be greater
than zero.

101

<3*GO The implementation-supplied function RND
does not use an argument, however, it does
find the next random number in series.

108-110

8.4 The implementation-supplied function SGN
with an argument X, SGN(X), returns the
sign of X.

90

8.4 The implementation-supplied function SIN
with an argument X, SIN(X), returns the
sine of X, where X is in radians.

104

"T
00 The implementation-supplied function SQR

with an argument X, SQR(X), returns the
nonnegative square root of X; X must be
nonnegative

.

94

•
00 The implementation-supplied function TAN

with an argument, TAN(X), returns the
tangent of X, where X is in radians.

105

in
•

00 There is an error condition if the value
of the argument of the LOG function is
zero or negative.

102-103

8.5 There is an error condition if the value
of the argument of the SQR function is
negative

.

95

8.5 There is an error condition if an incor- 117-137
rect number of arguments has been supplied
for a function reference.

8.5 There is an error condition if the evalua- 99,107
tion of the tangent or exponential func-
tion results in an overflow (nonfatal--
supply machine infinity with the appropri-
ate sign and continue).

9.2 The LET statement assigns a numeric ex- 6

pression to a simple numeric variable.

13

19.2 The LET statement assigns a string ex-
pression to a string variable.

9.2 The LET statement assigns a numeric ex- 39
pression to an array variable.

10.1 The GOTO statement allows for an uncondi- 9

tional transfer.

10.1 The IF-THEN statement allows for a condi- 11
tional transfer.

10.1 The GOSUB statement gives control to a 66
subroutine.

10.1 The RETURN statement returns control from 66
a subroutine.

10.1 The ON-GOTO statement allows control to be 70
transferred to a selected line.

10.1 The STOP statement allows for program ter- 141
minat ion

.

10.2 Any number of spaces can be between the GO 9

and the TO of the goto-statement

.

I

10.2 A numeric expression can be used by the ON 154
GOTO statement as its variable.

10.4 A goto-statement indicates that execution 9

of the program is to be continued starting
at the specified line-number.

10.4 If the value of the relation-expression in 11
an if-then-statement is true, then execu-
tion of the program continues from the
specified line-number; if the relation-
expression is false, then execution is
continued in sequence.

10.4 The relation "less than or equal to" is
denoted by <=.

11

10.4 The relation "greater than or equal to" is
denoted by >=.

11

10.4 The relation "not equal to" is denoted by
<>

.

11

10.4 The relation of equality holds between two
strings if and only if the two strings
have the same length and contain identical
sequences of characters.

14

10.4 The expression in an on-goto-statement is
evaluated and rounded to obtain an inte-

72

14

ger .

10.4 The rounded expression value in an on-goto- 70
statement is used to select a line-number
from the list following the GOTO.

10.4 The line numbers in the list of the on- 70
goto-statement are indexed from left to
right, starting with 1.

10.5 There is an error condition if the integer 72,73
obtained as the value of an expression
in an on-goto-statement is less than one
or greater than the number of line-numbers
in the list.

10.5 There is an error condition if a goto- 71
statement points to a nonexistent line-
number .

10.5 There is an error condition if an if-state- 15
ment points to a nonexistent line-number.

10.5 There is an error condition if a gosub- 67
statement points to a nonexistent line-
number .

10.5 There is an error condition if an on-goto- 71

statement points to a nonexistent line.

10.5 There is an error condition if an attempt 68
is made to execute a return-statement with
out having executed a corresponding gosub-
statement

.

11.1 The STEP clause in the for-statement is 34
opt ional

.

11.4 For-blocks can be nested, i.e. one can 34

contain another.

11.4 In the absence of a STEP clause in a for- 34
statement, the increment is assumed to be
+ 1 .

11.4 The execution of a for-statement steps 34

the initial value to the limit in incre-
ments as specified by the STEP clause.

11.5 There is an error condition if a for-state- 36
ment occurs without a matching next-state-
ment .

11.5 There is an error condition if a next- 37
statement occurs without a matching for-
statement .

15

11.5 There is an error condition if two for-
blocks are interleaved.

11.6 The value of tne contr ol-var iable upon
exit from a for-block via its next-state-
ment is the first value not used.

11.6 If exit is via a control statement, the
control-var iable retains its current value
and the for-block remains active.

12.4 Positive numbers when printed have a

leading space.

12.4 Negative numbers when printed have a lead-
ing minus sign.

12.4 All numbers when printed have a trailing
space

.

12.4 The possible print formats for the decimal
representation of a number are the same as
those described for numeric constants.

12.4 On output, there is a significance-width d

to control the number of significant deci-
mal digits printed in numeric representa-
tions .

12.4 There is also an exrad-width e to control
the number of digits printed in the exrad
component of a numeric representation.

12.4 The value of d shall be at least six.

12.4 The value of e shall be at least two.

12.4 Each number that can be represented exact-
ly as an integer with d or fewer decimal
digits is output using the implicit point
unsealed representation (NRl).

12.4 Numbers which are not integers, but which
have absolute values in the range 0.1-0. 5*
10'>

(-d-l) to 10~d-0.5, are to be repre-
sented in explicit point unsealed notation
(NR2) with d significant decimal digits
and a period.

12.4 Numbers with absolute values less than
0 . 1-0 . 5*10" (—d— 1) which can be expressed
exactly with d decimal digits following a

period are to be represented using the ex-
plicit point unsealed notation (NR2) also.

12.4 All other numbers are to be represented in
the explicit point scaled notation (NR3)

,

38

35

35

4,5,6

4,5,6

4,5,6

4,5,6

4.5.6

5.6

4.5.6

5.6

4

4

4

5,6

16

12.4 1

sign significand E sign integer, where the
value x of the significand is in the range
l<=x<10 and is to represented with ex-
actly d digits of precision, and where the
exrad component has one to e digits.

String-expressions are evaluated to generate
the corresponding string of characters.

12.4 The evaluation of the semicolon separator 1

generates the null string.

12.4 A null print list will skip a line. 1

12.4 Each print-line is divided into a fixed 1

number of print zones.

12.4 All print zones, except possibly the last 1

one on a line, shall have the same length.

12.4 This length shall be at least d+e+6 cha- 1,5
racters in order to accomodate the print-
ing of numbers in explicit point scaled
notation (NR3)

.

12.4 The argument of the tab-call is evaluated 150
and rounded to the nearest integer n.

12.4 If n is greater than the margin m, then n 92
is reduced by an integral multiple of m so
that it is in the range l<=n<=m.

12.4 If the columnar position of the current 1

line is less than or equal to n, then
enough spaces are generated to set the
columnar position to n; if the columnar
position of the current line is greater
than n, then an end-o f-pr int-1 ine is gen-
erated followed by enough spaces to set
the columnar position of the new current
line to n.

12.4 The evaluation of the comma separator gen- 1

erates enough spaces to fill out the cur-
rent print zone, unless this is the last
print zone on the line, in which case an
end-of-pr int-1 ine is generated.

12.4 If the evaluation of any print-item in a 91
print-list would cause the columnar posi-
tion of a nonempty line to exceed the mar-
gin, then an end-o f-pr int- 1 ine is appended
to the string of characters being generat-
ed before the characters generated by that
print-item. If the evaluation of any
print-item generates a string whose length
is greater than the margin, then an end-of

17

-print-line is generated each time the
columnar position of the current line ex-
ceeds the margin.

12.4 A completely empty print-list will gene-
rate an end-of-pr int-1 ine , thereby complet
ing the current line of output.

1

12.4 The tab-call places the next character for
output in the column specified by its ar-
gument.

1

12.5 There is an error condition if the rounded
argument of a tab-call is less than one
(nonfatal—supply a value of one and con-
tinue) .

2

13.1 Input-statements provide for interaction
with a running program by allowing vari-
ables to be assigned values that are
supplied from a source external to the
program.

82

13.4 After validation of an input-reply suppli-
ed during the execution of a program, an
input-statement causes the variables in
the variable-list to be assigned, in order
values from the input-reply.

82

13.4 In the interactive mode, the user of the
program is informed of the need to supply
data by the output of an input-prompt.

82

13.4 Execution of the program is suspended un-
til a valid input-reply has been supplied.

82

13.4 If the response to input for a string-
variable is an unquoted-string, leading
and trailing spaces are ignored.

83

13.4 Subscript expressions in the variable-list
are evaluated after values have been as-
signed to the variables preceding them
(i.e., to the left of them) in the vari-
able-1 ist

.

83

13.5 There is an error condition if the type of
a datum does not match the type of the
variable to which it is to be assigned
(nonfatal--allow the input-reply to be re-
suppl ied)

.

85

13.5 There is an error condition if there is
too much data in the data-list (nonfatal--
allow the input-reply to be resupplied).

86

13.5 There is an error condition if there is 87

18

insufficient data in the data-list (non-
fatal--allow the input-reply to be resup-
plied) .

13.5 There is an error condition if the conver- 88
sion of a numeric datum causes an under-
flow (nonf atal--allow the input-reply to
be resupplied)

.

13.5 There is an error condition if the conver- 89
sion of a numeric datum causes an overflow
(nonfatal--allow the input-reply to be re-
suppl ied)

.

13.5 There is an error condition if the conver- 93
sion of a string datum causes a string
overflow (nonfatal--allow the input-reply
to be resupplied).

14.1 The data-s tatement provides for the ere- 74
ation of a sequence of representations for
data elements for use by the read-state-
ment.

14.1 The read-statement assigns numeric vari- 74
ables to numeric information in the data-
statement

.

14.1 The read-statement assigns string informa- 74
tion from the data-statement to string
var iables

.

14.1 The restore-statement allows the data in 81
the program to be reread.

14.4 Data from the totality of data-statements 74
in the program are collected into a single
data sequence.

14.4 If the execution of a program reaches a 74
line containing a data-statement, it pro-
ceeds to the next line with no other
effect

.

14.4 The read-statement causes variables in the 74
variable-list to be assigned values, in
order, from the data sequence.

14.4 Each time a read-statement is executed, 74
variables in the variable-list are assign-
ed values from the data sequence beginning
with the datum indicated by the pointer,
and the pointer is advanced to point be-
yond the data used.

14.4 Subscript expressions in the variable-list 74
are evaluated after values have been as-

19

signed to the vaiables preceding them
(i.e., to the left of them) in the list.

14.4 if the conversion of a numeric datum 78
causes an underflow, then its value shall
be replaced by zero.

\

14.5 There is an error condition if the vari- 75
able-list in a read-statement requires
more data than are present in the remain-
der of the data sequence.

14.5 There is an error condition if a string 76
datum does not match the type of the
numeric variable to which it is to be as-
signed .

14.5 There is an error condition if the conver- 77
sion of a string datum causes a string
overflow.

14.5 There is an error condition if the conver- 79
sion of a numeric datum causes an overflow
(nonf atal--supply machine infinity with
the appropriate sign and continue).

15.1 The dimension-statement is used to reserve 39
space for arrays.

15.1 By use of a dimension-statement, the sub- 39
script(s) of an array may be declared to
have an upper bound other than ten.

15.1 By use of an option-statement, the sub- 63,64
scripts of all arrays may be declared to
have a lower bound of one.

15.4 Each array-declaration occurring in a 39
dimension-statement declares the array
named to be either one or two dimensional
according to whether one or two bounds are
listed for the array.

15.4 Arrays that are not declared in any 39
dimension-statement are declared implicit-
ly to be one or two dimensional according
to their first use in the program, and
have subscripts with a maximum value of
ten

.

15.4 The option-statement declares the minimum 63
value Jor all array subscripts.

15.4 If no option-statement occurs in a pro- 39
gram, this minimum is zero.

15.4 If the execution of a program reaches a 39

20

line containing a dimension-statement or
an option-statement, it proceeds to the
next line with no other effect.

15.5 There is an error if an upper bound of
zero is specified in a dimension-statement
for a subscript when an option-statement
specifies that all lower bounds are one.

63

16.2 In one program you can have upto 26 user-
defined functions (i.e., DEF FNA through
DEF FNZ) .

112

16.4 Evaluation of functions are performed with
respect to argument values of the refer-
encing functions.

111

16.4 The evaluation of the argument list of a

function is performed first when used in
an expression.

111

16.4 The number of arguments must correspond
exactly to the number of parameters within
the user-defined function.

138

16.4 An argument is not needed if there is not
any parameter-list with the user-defined
f unct ion

.

113

16.4 The function within an expression which
references a user-defined function should
substitute the evaluated value of its
argument-list for the parameter-list of
that defined function.

111

16.4 Once the defined function receives a value
for its parameter-list, it uses this value
within its defined expression and substi-
tutes the results as the value of the
function within the referencing expres-
sion .

111

16.4 The parameter appearing in the parameter-
list of a function definition is local to
that definition.

111

16.4 A function definition can refer to other
defined functions.

111

16.5 There is an error condition if the same
function is defined more than once.

114

16.5 There is an error condition if a function
is referenced inside its definition.

115

17.1 The randomize-statement overrides the im-
plementation-predefined sequence of pseudo

109

21

random numbers as values for the RND func-
tion, allowing different (and unpredict-
able) sequences each time a given program
is executed.

17.6 The RND function in the absence of a ran- 108
domize-statement will generate the same
sequence of pseudo-random numbers each
time a program is run.

18.1 The remark-statement allows program 9

annotation

.

18.4 The remark-statement has no effect when 9

executed

.

18.4 The remark-statement can serve as a 9

statement to which control is transferred.

22

Table 2

Test Programs

Program Title Volume

1 Output and Assignment of 2

Strings

2 Exception Test for Printing 2

TAB Beyond the Left Margin

3 Using Empty Print Items to 2

Space Over Print Zones

4 Printing Integer and Fixed 2

Point Constants

5 Printing Floating Point 2

Constants

6 Printing of Floating Point 2

Numbers (Cont.) and
Assignment of Integer and
Fixed Point Values

7 Assignment of Floating Point 2

Constants

8 Testing the Minimal Limits 2

in Magnitude of Numerical
Constants

9 The REM and GOTO Statements 2

10 Test for GOTO with Illegal 2

Statement Label

11 The IF-THEN Statement Used 2

to Compare Positive Numerical
Constants

12 The IF-THEN Statement Used 2

to Compare Negative Numerical
Constants

13 IF-THEN Comparison of 2

Negative Constant (Cont.)
and Variables Avoiding
Parentheses

14 Comparing Quoted Strings 2

and String Variables

15 Test of IF-THEN Transfer to 2

Illegal Line Number

23

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Line Labels With and 2

Without Leading Zeroes

Order of Lines - Two Lines 2

with the Same Line Number

Order of Lines - Lines Out 2

of Order

The ABS Function and 2

Elementary Numerical
Expressions using Constants

Elementary Numerical 2

Expressions Using Constants
(Continued

)

Elementary Numerical 2

Expressions Using Constants
(Continued)

Elementary Expressions 2

Using Simple Variables

Elementary Expressions 2

Using Simple Variables
(Continued

)

Elementary Operations on 2

Mixed Type Constants

Elementary Operations on 2

Mixed Type Constants
(Continued

)

Elementary Operations on 2

Variables Assigned Mixed
Type Constants

Elementary Operations on 2

Variables Assigned Mixed
Type Constants (Continued)

Addition of Three or More 2

Terms

Multiplication of Three or 2

More Factors

Hierarchy of Operators 2

and Parentheses

Hierarchy of Operators 2

and Parentheses (Continued)

Evalustion of Expressions 2

Having a Variety of

24

Operators

33 Insertion of Spaces " 2

Between Elements of
Numeric Expressions

34 The FOR - NEXT Statements 3

35 Exiting from FOR - Blocks 3

36 Syntax Diagnostic - A FOR 3
- Statement Without a
Matching NEXT - Statement

37 Syntax Diagnostic - A 3

NEXT - Statement Without
a Matching FOR - Statement

38 Semantic Error - The 3

Interleaving of Two FOR -

Blocks

39 Introducing the Dimension 3

Statement

40

41

42

43

44

45

46

Extending IF - THEN 3

Capabilities by Using
One - Dimensional Arrays
in the Comparison

Extending IF - THEN 3

Capabilities by Using
Two - Dimensional Arrays
in the Comparison

The ABS Function With 3

Subscripted Variables for
Arguments

Using Elementary 3

Operations on Subscripted
Variables Assigned Same
Type Constants

Using Elementary 3

Operations on Subscripted
Variables Assigned Same
Type Constants (Continued)

Using Elementary 3

Operations on Subscripted
Variables Assigned Mixed
Type Constants

Using Elementary 3

Operations on Subscripted
Variables Assigned Mixed

25

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Type Constants (Continued)

Using Elementary 3

Operations on Subscripted
Variables Assigned Mixed
Type Constants (Continued)

Addition of More Than Two 3

Terms Containing Array
Elements

Multiplication of More 3

Than Two Terms

Hierarchy of Operators 3

and Parentheses

Evaluation of Expressions 3

that have a Variety of
Operators

Exception Test - Zero 3

Raised to a Negative
Power

Exception Test - A 3

Negative Number Raised
to a Non - Negative Power

Semantic Test - 3

Subscripted Variable
with Different Numbers
of Subscripts

Exception Test - A 3

Subscript is not in the
Range of the Implicit
Dimensioning Bounds

Exception Test - A 3

Subscript is not in the
Range of an Explicitly
Dimensioned Variable

Attempting String 3

Overflow by Variable
Assignment

Test for Undefined 3

Var iables

Exception Test - 3

On Division By Zero

Exception Test - 3

On Expression Evaluation
Resulting in Overflow

26

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

3Semantic Test - On the
Magnitude of a Nonzero
Numeric Constant That is
too Small

Exception Test - On the 3

Magnitude of a Nonzero
Numeric Constant That is
too large

DIM Statement with the 3

OPTION Statement

Using the OPTION BASE - 3

Statement to Change
Implicit Array Lower
Bounds

Testing the Assignment 3

of Zero for an Expression
Causing Underflow upon
Evaluation

GOSUB/RETURN - Statement 3

Semantic Error - Test on 3

GOSUB Transfer to an
Illegal Line Number

Exception Test - RETURN - 3

Statement Without GOSUB

Testing Roundoff to Six 3

Significant Digits of
Constants of Arbitrary
Leng th

The ON - GOTO Statement 3

Semantic Diagnostic - 3

ON - GOTO Statement
Referring to a Non-
Existent Line Number

Exception Test - Value of 3

ON - GOTO Expression
Less than One

Exception Test - Value of 3

ON - GOTO Expression
Greater than the Number
of Line Numbers in the
List

READ/DATA Statements 3

Exception Test - READ - 3

27

Statement Encounters
Insufficient DATA

76 Exception Test - Non- 3

Matching String Datum
Assigned to a Numeric
Variable

77 Exception Test - 3

Attempting a String
Datum Overflow

78 Semantic Interpretation - 3

A Numeric Value in a
DATA List Causes an
Underflow

79 Exception Test - A 3

Numeric Value in a DATA
Statement Causes an
Overflow

80 Exception Test - Overflow 3

Caused by a Numeric Value
in a DATA Statement
(Continued

)

81 Restoring READ Data 3

82 INPUT Statement for 3

Numeric Constants

83 INPUT of Numeric Data 3

to Subscripted Variables
and Unquoted Strings

84 Inputting Mixed Data 3

85 Exception Test - Type of 3

Datum Incorrect

86 Exception Test - Too 3

much Data in DATA List

87 Exception Test - 3

Insufficient Data in
DATA List

88 Numeric Underflow on 3

INPUT

89 Exception Test - Numeric 3

Over flow

90 Testing the INT and SGN 3

Functions

28

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Printing Strings Beyond 3

the Margin

Tabbing Strings Beyond 3

the Margin

Exception Test - String 3

Overflow

The SQR Function 4

Exception Test for the 4

SQR Function

The ATN Function 4

The COS Function 4

The EXP Function 4

Exception Test for the 4

EXP Function

Underflow of the 4

Exponential Function

The LOG Function 4

Exception Test for the 4

LOG Function with Zero
Argument

Exception Test for the 4

LOG Function with a

Negative Argument

The SIN Function 4

The TAN Function 4

Accuracy for 4

Exponentiation

Exception Test for TAN 4

Function at PI/2

RND Function Without 4

RANDOMIZE

RND Function with 4

RANDOMIZE

Uniformity Test for the 4

RND Function

User Defined Functions 4

with a Parameter List

29

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Testing All Possible 4

Parametrized User Defined
Function Specifications

User Defined Functions 4

without a Parameter List

User Defined Function 4

Diagnostic - The Same
Function is Defined More
Than Once

A User Defined Function 4

is Referenced Inside Its
Own Definition

Syntax Diagnostic - 4

Argument List Used,.
Incorrectly with a

Defined Function

Syntax Diagnostic - 4

No Argument List for the
ABS Function

Syntax Diagnostic - 4

No Argument List with ATN

Syntax Diagnostic - No 4

Argument List with COS

Syntax Diagnostic - No 4

Argument List with EXP

Syntax Diagnostic - No 4

Argument List with INT

Syntax Diagnostic - No 4

Argument List with LOG

Syntax Diagnostic - No 4

Argument List with SGN

Syntax Diagnostic - 4

No Argument List with SIN

Syntax Diagnostic - No 4

Argument List with SQR

Syntax Diagnostic - No 4

Argument List with TAN

Syntax Diagnostic - A 4

Defined Function with an
Argument but Called
without It

30

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

ABSSyntax Diagnostic -

Used with too Many
Arguments

Syntax Diagnostic - ATN
with too Many Arguments

Syntax Diagnostic - COS
with too Many Arguments

Syntax Diagnostic - EXP
with too Many Arguments

Syntax Diagnostic - INT
with too Many Arguments

Syntax Diagnostic - LOG
with too Many Arguments

Syntax Diagnostic - SGN
with too Many Arguments

Syntax Diagnostic - SIN
with too Many Arguments

Syntax Diagnostic - SQR
with too Many Arguments

Syntax Diagnostic - TAN
with too Many Arguments

Syntax Diagnostic -

Defined Function with
more than One Argument

Syntax Diagnostic - A
Defined Function with
Illegal Argument

Syntax Diagnostic -

Reference to an
Undefined Function

Testing the STOP
Statement

END Statement must be
the Last Program
Statement

A Program Requires an
END Statement

Compound Expressions
as Arguments for ABS
and ATN

31

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Compound Expressions
as Arguments for COS
and EXP

4

Compound Expressions 4

as Arguments for LOG
and SGN

Compound Expressions 4

as Arguments for SIN
and SQR

Compound Expressions 4

as Arguments for TAN.
and INT

Compound Expressions 4

as Arguments for a

User Defined Function

Compound Expressions 4

Used as PRINT Items and
TAB Arguments

Compound Expressions 4

Used in IF-THEN
Statements

Compound Expressions 4

Used in FOR-NEXT
Statements

Compound Expressions 4

Used in Subscripts

Compound Expression 4

Used in an ON-GOTO

Compound Expressions 4

Using Supplied Functions

Semantic Error - Upper 4

Bound of Array set to
Zero with Option

Semantic Error - 4

Multiple Option
Statements

Semantic Error - Option 4

Statement after Array
Reference

Semantic Error - Array 4

Declaration Out of Order

Semantic Error - 4

32

161

Dimensioning an Array
More than Once

Initializing String 4

Var iables

33

4.0

User Instructions

The test programs are provided on standard 1/2. inch magnetic tape in a

format described separately from this document. It is assumed that the user
will accomplish any translation of code set and transfer between recording
and storage media that is necessary for the system to be tested; such
transformations cannot be specified here. Each program is a separate file on
the tape and it will be convenient usually to store each as a separate file
on the system to be tested. Any other assumptions have been discussed
previously in sections 2.4 and 2.5. Specific procedures for use of the NBS
Test Programs for validating BASIC processors for Federal government use are
issued separately by NBS.

4.1

Order of Test Execution

The programs are organized so that they may be executed sequentially
from test number 1 to test number 161. This is how a user should perform
them, since test failures in early tests might explain possible test failures
later

.

4.2

User Interaction

Except for the programs
the INPUT statement, none
unless some error is detected
The codes that test for e

semantics tests in the table
set. The codes that requi
messages that the user should
form and items that should
prompt. User interaction is
ending with program 93.

that test errors and user interaction through
of the test routines require user intervention
in the processor during the code execution,

rror conditions are labelled as either syntax or
of contents of the other three volumes to this
re user interaction with the program have prompt
follow carefully. These messages specify the
be entered by the user at the time of the input
required beginning with test program 82 and

34

5.0 Experience

The validation system has been
of the routines have been used
system. None of these systems lays
since that standard is still pending
official adoption.

run on a PDP-10 and a UNIVAC 1108.
on an IBM 5100, an INTERDATA and

claim to conforming to the Minimal
within ANSI, and could be changed

Some
a NOVA
BASIC,
before

All of the tested implementations illustrated some variance from the
pending standard, as was expected. Most variances were relatively
inconsequential, such as the TAB function printing in the column past the one
specified by the standard. Others may take more work to correct, such as the
one implementation that could not process strings of 18 characters in length.
The most interesting discoveries, however, were two: One implementation was
using a new release of
ver sion--unl ike the old
expression list. Another
constant in the source
computation and print witho

its BASIC language processor
one--would not accept a PRINT st

implementation flagged as i

programs that it could both gene
ut difficulty.

, and
atement
1 legal
rate by

the new
without an
a numeric
a separate

35

6.0 Observations on Testing

To be completely thorough, validation routines would have to test all
possible programs. This is impossible; yet one can try to develop tests
that exercise the most useful syntactic variants for each statement type--an
achievable objective. Language standards provide a broad specification of
language capability, but from the user's point of view, languages cannot be
disembodied from their implementations. To be useful, therefore, validation
routines must make some test of the implementation-defined features, such as
error messages, and the accuracy of evaluation of mathematical expressions.

In general all housekeeping and test control of the routines is written
using a fundamental set of language features. In particular, the bulk of the
code written was confined to PRINT, LET, GOTO and IF-THEN. Although the
authors did not always confine themselves to these statements, preferring
instead to build on new features as they were tested in turn, in retrospect
it might have been wise to do so. The present routines, for example, would
be difficult to run on an implementation that failed several early tests,
thereby rendering later tests unusable or unreliable. By confining the code
to a very elemental subset of capabilities, however, one perhaps could have
made it feasible to test higher level features even when many other features
failed, so long as the tested implementation supported the elemental subset
properly. The difficulty with this approach, however, is that the validation
routines become longer and less readable than at present. The design that
has been carried out we believe is a reasonable and workable compromise on
this issue.

36

7.0 References

[1J Proposed Amer ican National St andard for Minimal BASIC, X3.60,
American National Standards Institute, New York, May 1977.

12| C. T. Fike, Computer Evaluation of Mathematical Functions ,

Prentice-Hall, Englewood Cliffs, New Jersey (1968).

[3 J D. E. Knuth, The Ar t of Computer Programming , Vol. 2,

Add ison-Wesley Publishing Company, Reading, Massachusetts
(1969)

.

14) F. E. Holberton, E. G. Parker, " NBS FORTRAN Test Programs,
NBS Special Publ ication 399 , 3 Vols., U. S. Government
Printing Office, Washington, D. C. 20402

37

MBS-1 14A (REV 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS. IR 7 8-1420-1

2. Gov’t Accession
No.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

NBS Minimal BASIC Test Programs - Version 1

5. Publication Date

January 1978

User's Manual 6. Performing Organization Code

Vnliuno 1 - Tpst Svsfpm Overview
7. AUTHOR(S)

David E. Gilsinn and Charles L. Sheppard

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

6401121
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP

)

13. Type of Report & Period
Covered

Final

National Bureau of Standards 14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

This volume is the first of four volumes that comprise the user’s guide to the

NBS Minimal BASIC test programs. These programs test the conformance of a processor
for the BASIC programming language to the specifications given in BSR X3.60 Proposed
American National Standard for Minimal BASIC , which is expected to be a Federal Standard.
This volume introduces the test system, and covers test program design considerations,
user instructions, a discussion of experience in using the system, as well as some
observations on testing as a whole. This volume also contains a cross reference index

between specifications within the Minimal BASIC standard and the test programs.
Volumes 2 through 4 contain brief descriptions, listings and sample outputs of the
individual test programs for Minimal BASIC. The entire set of programs is available
on magnetic tape from the Institute for Computer Sciences and Technology at the
National Bureau of Standards.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

BASIC; BASIC standard; BASIC validation; compiler validation, computer programming
language; computer standards.

18. AVAILABILITY
|

1

Unlimited

£^*For Official Distribution. Do Not Release ro NTIS

(}
Order From Sup. of Doc., U.S. Government Printing Office
Washington, D.C. 20402, SD Car. No. Cl 3

I |
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

USCOMM.DC 29042-P74

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF PAGES

43

20. SECURITY CLASS 22. Price

(THIS PAGE)

UNCLASSIFIED

